Targeting argininosuccinate synthetase negative melanomas using combination of arginine degrading enzyme and cisplatin
نویسندگان
چکیده
Loss of argininosuccinate synthetase (ASS) expression in melanoma makes these tumor cells vulnerable to arginine deprivation. Pegylated arginine deiminase (ADI-PEG20) which degrades arginine to citrulline and ammonia has been used clinically and partial responses and stable disease have been noted with minimal toxicity. In order to improve the therapeutic efficacy of ADI-PEG20, we have combined ADI-PEG20 with a DNA damaging agent, cisplatin. We have shown that the combination of the two drugs together significantly improved the therapeutic efficacy when compared to ADI-PEG20 alone or cisplatin alone in 4 melanoma cell lines, regardless of their BRAF mutation. In-vivo study also exhibited the same effect as in-vitro with no added toxicity to either agent alone. The underlying mechanism is complex, but increased DNA damage upon arginine deprivation due to decreased DNA repair proteins, FANCD2, ATM, and CHK1/2 most likely leads to increased apoptosis. This action is further intensified by increased proapoptotic protein, NOXA, and decreased antiapoptotic proteins, SURVIVIN, BCL2 and XIAP. The autophagic process which protects cells from apoptosis upon ADI-PEG20 treatment also dampens upon cisplatin administration. Thus, the combination of arginine deprivation and cisplatin function in concert to kill tumor cells which do not express ASS without added toxicity to normal cells.
منابع مشابه
Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo.
Some murine melanomas and hepatocellular carcinomas (HCCs) have been shown to be auxotrophic for arginine. Arginine deiminase (ADI; EC 3.5.3.6.), an arginine-degrading enzyme isolated from Mycoplasma, can inhibit growth of these tumors. We found that ADI was specific for arginine and did not degrade other amino acids. Although arginine is not an essential amino acid for most cells, all human me...
متن کاملActivation of Ras/PI3K/ERK pathway induces c-Myc stabilization to upregulate argininosuccinate synthetase, leading to arginine deiminase resistance in melanoma cells.
Melanomas and other cancers that do not express argininosuccinate synthetase (AS), the rate-limiting enzyme for arginine biosynthesis, are sensitive to arginine depletion with pegylated arginine deiminase (ADI-PEG20). However, ADI resistance eventually develops in tumors because of AS upregulation. Although it has been shown that AS upregulation involves c-Myc, the underlying mechanisms remain ...
متن کاملActivation of Ras/PI3K/ERK Pathway Induces c-Myc Stabilization to Upregulate Argininosuccinate Synthetase, Leading
Melanomas and other cancers that do not express argininosuccinate synthetase (AS), the rate-limiting enzyme for arginine biosynthesis, are sensitive to arginine depletion with pegylated arginine deiminase (ADI-PEG20). However, ADI resistance eventually develops in tumors because of AS upregulation. Although it has been shown that AS upregulation involves c-Myc, the underlying mechanisms remain ...
متن کاملCisplatin-induced synthetic lethality to arginine-starvation therapy by transcriptional suppression of ASS1 is regulated by DEC1, HIF-1α, and c-Myc transcription network and is independent of ASS1 promoter DNA methylation
Many human tumors require extracellular arginine (Arg) for growth because the key enzyme for de novo biosynthesis of Arg, argininosuccinate synthetase 1 (ASS1), is silenced. These tumors are sensitive to Arg-starvation therapy using pegylated arginine deiminase (ADI-PEG20) which digests extracellular Arg. Many previous studies reported that ASS1 silencing is due to epigenetic inactivation of AS...
متن کاملTargeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes
It has been shown that a subset of human cancers, notably, melanoma and hepatocellular carcinoma (HCC) are auxotrophic for arginine (Arg), because they do not express argininosuccinate synthetase (ASS), the rate-limiting enzyme for the biosynthesis of arginine from citrulline. These ASS-negative cancer cells require Arg from extracellular sources for survival. When they are exposed to recombina...
متن کامل